Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Eur J Pediatr ; 181(12): 4019-4037, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2027501

ABSTRACT

Children are the future of the world, but their health and future are facing great uncertainty because of the coronavirus disease 2019 (COVID-19) pandemic. In order to improve the management of children with COVID-19, an international, multidisciplinary panel of experts developed a rapid advice guideline at the beginning of the outbreak of COVID-19 in 2020. After publishing the first version of the rapid advice guideline, the panel has updated the guideline by including additional stakeholders in the panel and a comprehensive search of the latest evidence. All recommendations were supported by systematic reviews and graded using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. Expert judgment was used to develop good practice statements supplementary to the graded evidence-based recommendations. The updated guideline comprises nine recommendations and one good practice statement. It focuses on the key recommendations pertinent to the following issues: identification of prognostic factors for death or pediatric intensive care unit admission; the use of remdesivir, systemic glucocorticoids and antipyretics, intravenous immunoglobulin (IVIG) for multisystem inflammatory syndrome in children, and high-flow oxygen by nasal cannula or non-invasive ventilation for acute hypoxemic respiratory failure; breastfeeding; vaccination; and the management of pediatric mental health. CONCLUSION: This updated evidence-based guideline intends to provide clinicians, pediatricians, patients and other stakeholders with evidence-based recommendations for the prevention and management of COVID-19 in children and adolescents. Larger studies with longer follow-up to determine the effectiveness and safety of systemic glucocorticoids, IVIG, noninvasive ventilation, and the vaccines for COVID-19 in children and adolescents are encouraged. WHAT IS KNOWN: • Several clinical practice guidelines for children with COVID-19 have been developed, but only few of them have been recently updated. • We developed an evidence-based guideline at the beginning of the COVID-19 outbreak and have now updated it based on the results of a comprehensive search of the latest evidence. WHAT IS NEW: • The updated guideline provides key recommendations pertinent to the following issues: identification of prognostic factors for death or pediatric intensive care unit admission; the use of remdesivir, systemic glucocorticoids and antipyretics, intravenous immunoglobulin for multisystem inflammatory syndrome in children, and high-flow oxygen by nasal cannula or non-invasive ventilation for acute hypoxemic respiratory failure; breastfeeding; vaccination; and the management of pediatric mental health.


Subject(s)
Antipyretics , COVID-19 , Respiratory Insufficiency , Adolescent , Child , Humans , COVID-19/prevention & control , COVID-19 Vaccines , Immunoglobulins, Intravenous , Oxygen
3.
Front Cell Infect Microbiol ; 11: 663884, 2021.
Article in English | MEDLINE | ID: covidwho-1317217

ABSTRACT

Background: The pandemic of Coronavirus Disease 2019 (COVID-19) brings new challenges for pediatricians, especially in the differentiation with non-COVID-19 pneumonia in the peak season of pneumonia. We aimed to compare the clinical characteristics of pediatric patients with COVID-19 and other respiratory pathogens infected pneumonias. Methods: We conducted a multi-center, cross-sectional study of pediatric inpatients in China. Based on pathogenic test results, pediatric patients were divided into three groups, including COVID-19 pneumonia group, Non-COVID-19 viral (NCV) pneumonia group and Non-viral (NV) pneumonia group. Their clinical characteristics were compared by Kruskal-Wallis H test or chi-square test. Results: A total of 636 pediatric pneumonia inpatients, among which 87 in COVID-19 group, 194 in NCV group, and 355 in NV group, were included in analysis. Compared with NCV and NV patients, COVID-19 patients were older (median age 6.33, IQR 2.00-12.00 years), and relatively fewer COVID-19 patients presented fever (63.2%), cough (60.9%), shortness of breath (1.1%), and abnormal pulmonary auscultation (18.4%). The results were verified by the comparison of COVID-19, respiratory syncytial virus (RSV) and influenza A (IFA) pneumonia patients. Approximately 42.5%, 44.8%, and 12.6% of the COVID-19 patients presented simply ground-glass opacity (GGO), simply consolidation, and the both changes on computed tomography (CT) scans, respectively; the proportions were similar as those in NCV and NV group (p>0.05). Only 47.1% of COVID-19 patients had both lungs pneumonia, which was significantly lower than that proportion of nearly 80% in the other two groups. COVID-19 patients presented lower proportions of increased white blood cell count (16.5%) and abnormal procalcitonin (PCT) (10.7%), and a higher proportion of decreased lymphocyte count (44.0%) compared with the other two groups. Conclusion: Majority clinical characteristics of pediatric COVID-19 pneumonia patients were milder than non-COVID-19 patients. However, lymphocytopenia remained a prominent feature of COVID-19 pediatric pneumonia.


Subject(s)
COVID-19 , Pneumonia , Child , China/epidemiology , Cross-Sectional Studies , Humans , Lung/diagnostic imaging , Pneumonia/epidemiology , Retrospective Studies , SARS-CoV-2
4.
IET Cyber-Systems and Robotics ; n/a(n/a), 2021.
Article in English | Wiley | ID: covidwho-1152902

ABSTRACT

Abstract The exponential spread of COVID-19 worldwide is evident, with devastating outbreaks primarily in the United States, Spain, Italy, the United Kingdom, France, Germany, Turkey and Russia. As of 1 May 2020, a total of 3,308,386 confirmed cases have been reported worldwide, with an accumulative mortality of 233,093. Due to the complexity and uncertainty of the pathology of COVID-19, it is not easy for front-line doctors to categorise severity levels of clinical COVID-19 that are general and severe/critical cases, with consistency. The more than 300 laboratory features, coupled with underlying disease, all combine to complicate proper and rapid patient diagnosis. However, such screening is necessary for early triage, diagnosis, assignment of appropriate level of care facility, and institution of timely intervention. A machine learning analysis was carried out with confirmed COVID-19 patient data from 10 January to 18 February 2020, who were admitted to Tongji Hospital, in Wuhan, China. A softmax neural network-based machine learning model was established to categorise patient severity levels. According to the analysis of 2662 cases using clinical and laboratory data, the present model can be used to reveal the top 30 of more than 300 laboratory features, yielding 86.30% blind test accuracy, 0.8195 F1-score, and 100% consistency using a two-way patient classification of severe/critical to general. For severe/critical cases, F1-score is 0.9081 (i.e. recall is 0.9050, and precision is 0.9113). This model for classification can be accomplished at a mini-second-level computational cost (in contrast to minute-level manual). Based on available COVID-19 patient diagnosis and therapy, an artificial intelligence model paradigm can help doctors quickly classify patients with a high degree of accuracy and 100% consistency to significantly improve diagnostic and classification efficiency. The discovered top 30 laboratory features can be used for greater differentiation to serve as an essential supplement to current guidelines, thus creating a more comprehensive assessment of COVID-19 cases during the early stages of infection. Such early differentiation will help the assignment of the appropriate level of care for individual patients.

7.
Ann Transl Med ; 8(10): 623, 2020 May.
Article in English | MEDLINE | ID: covidwho-609905

ABSTRACT

BACKGROUND: To clarify the characteristic and the duration of positive nucleic acid in children infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including asymptomatic children. METHODS: A total of 32 children confirmed with SARS-CoV-2 infection between January 24 and February 12, 2020 from four provinces in western China were enrolled in this study and followed up until discharge and quarantine 14 days later. RESULTS: Eleven children (34%) were asymptomatic, among whom six children had normal computed tomographic (CT) scan images. Age and gender were not associated with clinical symptoms or the results of CT scan in children infected with SARS-CoV-2. The concentrations of white blood cells and neutrophils were higher in children with asymptomatic infection than in children with clinical symptoms or CT abnormalities. Patients who presented with CT abnormalities had lower D-dimer or lower total bilirubin than those who had normal CT scan but clinical symptoms. All children recovered and no one died or was admitted to the pediatric intensive care unit (PICU). The mean duration of positive SARS-CoV-2 nucleic acid was 15.4 (SD =7.2) days and similar for both asymptomatic children and children with symptoms or CT abnormalities. We found a significant negative correlation between the lymphocyte count and the duration of positive nucleic acid test. CONCLUSIONS: Children with asymptomatic infection should be quarantined for the same duration as symptomatic patients infected with SARS-CoV-2. The clinical significance and mechanism behind the negative correlation between the number of lymphocytes and the duration of positive SARS-CoV-2 needs further study.

9.
Arch Dis Child ; 105(12): 1146-1150, 2020 12.
Article in English | MEDLINE | ID: covidwho-257265

ABSTRACT

The pandemic due to a novel coronavirus has been sweeping across different regions of the globe since January 2020. Early reports of this infection due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) consisted of mostly adult patients. As the outbreak spreads rapidly beyond the epicentre of Wuhan, it becomes clear that infants and children of all ages are susceptible to this infection. In China, there have been more than 1200 paediatric cases. Most paediatric patients acquire the infection through household contact with infected adults. The disease in children is usually self-limiting and most infected children will recover uneventfully within 7-10 days. Other than symptoms of the respiratory tract, many children may present with gastrointestinal symptoms. Older children are more likely to have asymptomatic infection. Although deaths related to SARS-CoV-2 are rarely reported in the paediatric age group, young children and those with underlying medical conditions are more likely to develop severe illness. Only a small fraction of neonates born to infected mother would acquire the virus by vertical transmission. Because a large proportion of children and adolescents may have asymptomatic or mildly symptomatic infection, children are likely to play an important role in community transmission of this infection. Screening of children who have a definitive contact history will facilitate early diagnosis and isolation of all infected children. This review summarises the lessons learned in China with regard to the current understanding of SARS-CoV-2 infection in the paediatric population.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19 , Communicable Disease Control/methods , SARS-CoV-2/isolation & purification , Adolescent , COVID-19/epidemiology , COVID-19/physiopathology , COVID-19/transmission , Child , China/epidemiology , Community-Acquired Infections/epidemiology , Community-Acquired Infections/transmission , Humans , Infant, Newborn , Infectious Disease Transmission, Vertical
SELECTION OF CITATIONS
SEARCH DETAIL